Effects of Calcium Antagonists on Insulin Release

Prof. Mashori Ghulam Rasool, Pakistan

Peoples University of Medical & Health Sciences For Women, Pakistan.
Introduction

• Cardiovascular diseases are the main cause of death in many countries and pose health problems not only in the developed countries, but also in the developing countries (WHO, 2015).
Introduction

• Antihypertensive treatment has reduced the incidence of stroke, heart failure and renal failure. However, the incidence of coronary heart disease (CHD) is not reduced to the same degree (Wang et. el. 2005) (European Society of Cardiology 2014)

Introduction

• The main goal in the treatment of Hypertension is to reduce the risk of future cardiovascular morbidity and early death. (Vadera et. el. 2011). Cardiovascular diseases may be related not only to the elevated blood pressure, but also to the other risk factors, including the increase in plasma glucose (Davidson JA, 2009)

Introduction

Treatment of hypertension in most instances is prolonged and often for life. Therefore it is always necessary to identify antihypertensive drugs such as the Calcium Antagonists, which are needed to reduce blood pressure, that may potentially cause deterioration in GI (Jeff Hughes, 2007).
Introduction

• Several agents advocated as first line drugs in the stepwise antihypertensive therapy have been known to cause carbohydrate intolerance and this has been implicated as a major risk factor in the development of CHD (Suter et. al 1995).

Introduction

• In the 1990’s individualized therapy in the treatment of Hypertension has also been advocated (Ogihara et al 1990), whereby new groups of antihypertensive drugs, such as the Calcium Antagonists may be used as first line therapy (Burnier et al, 2009).
Objective

• The study relates to evaluate and compare the effects of a number of calcium antagonists of dihydropyridine class on insulin release in rat isolated pancreas.
Method

Loubatieres et. al. (1972)

Male Albino Rats 250-300gm, fasted for over night

Pancreas isolated using phenobarbitone

Perfused with low glucose (60mg/100ml) in Krebs Solution

3-conc. of each drug in Krebs Solution chosen

10X below Therapeutic Conc.

Therapeutic Conc.

10x above Therapeutic Conc.

5 samples collected (Low Glucose Conc.)

20 samples collected (High Glucose Conc.--- 300mg/100ml)

Samples stored and frozen at -20⁰C then Analyzed by using RIA (Coat-A-Count Kit)
Method

• The concentrations chosen for the drugs were based on the peak serum/plasma concentration achieved in human with a single therapeutic dose.

• The Concs. of drugs used are shown in Table-I
Table-I: Concentration of Calcium Antagonists used in the Study

<table>
<thead>
<tr>
<th>Calcium Antagonist</th>
<th>1/10 Peak Plasma Concentration</th>
<th>Peak Plasma Concentration</th>
<th>10x Peak Plasma Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isradipine</td>
<td>1ng</td>
<td>10ng</td>
<td>100ng</td>
</tr>
<tr>
<td>Nicardipine</td>
<td>20ng</td>
<td>200ng</td>
<td>2µg</td>
</tr>
<tr>
<td>Amlodipine</td>
<td>0.5ng</td>
<td>5ng</td>
<td>50ng</td>
</tr>
</tbody>
</table>
Effects of low (0-5) and high glucose perfusion (6-25 min) on insulin release in normal isolated rat pancreas.
Effect of Diazoxide (10µg/ml) on insulin release (µlU/min) in low and high glucose perfusion in isolated rat pancreas (n=6)
Method

1. Effect of Glucose on Insulin Release is Biphasic Response.

2. Diazoxide a known insulin suppressant drug used as a positive control at a dose \(10\mu g/ml\) shows inhibition of insulin release approximately by 50% (Howell et al. 1968, Henquin et al. 1982, Bergsten et al. 1988, Garrino et al. 1989 etc.)
Effect of Diazoxide (10µg/ml) on average insulin/min/pancreas (mean± sem) in low and high glucose perfusion in isolated rat pancreas (n=6) (*P<0.05).
Effects of Isradipine (1ng/ml, 10ng/ml & 100ng/ml) on insulin release (µU/min) in low and high glucose perfusion in isolated rat pancreas (n=6).
Effects of Isradipine (1ng/ml, 10ng/ml & 100ng/ml) on average insulin/min/pancreas (mean ± sem) in low and high perfusion in isolated rat pancreas (n=6). (*P<0.05)
Effects of Isradipine on Insulin Release

- At 1ng/ml there were no significant effect.
- At 10ng/ml and 100ng/ml there was significant inhibition of insulin release.
- Inhibition was dose dependent.
Effects of Nicardipine (20ng/ml, 200ng/ml, & 2µg/ml) on insulin release (µlU/min) in low and high glucose perfusion in isolated rat pancreas. (n=6)
Effects of Nicardipine (20ng/ml, 200ng/ml, & 2ug/ml) on average insulin/min/pancreas (mean ± sem) in low and high glucose perfusion in isolated rat pancreas (n=6). (*P<0.05)
Effects of Nicardipine on Insulin Release

• At 20ng/ml there was no significant effect.
• At 200ng/ml and 2µg/ml there were significant inhibition of insulin release.
• Inhibition was dose dependent.
Effects of Amlodipine (0.5ng/ml, 5ng/ml & 50ng/ml) on insulin release (µlU/min) in low and high glucose perfusion in isolated pancreas (n=6).
Effects of Amlodipine (0.5ng/ml, 5ng/ml & 50ng/ml) on average insulin/min/pancreas (mean ± sem) in low and high glucose perfusion in isolated rat pancreas (n=6). (*P<0.05)
Effects of Amlodipine on Insulin Release

- At 0.5ng/ml, 5ng/ml, and 50ng/ml, there were no significant inhibition on insulin release.
Conclusion

• Different Calcium antagonists have varying effects on insulin release at equivalent therapeutic doses.
The End